
Timely Offloading of Result-Data in HPC Centers∗

Henry M. Monti, Ali R. Butt
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

{hmonti, butta}@cs.vt.edu

Sudharshan S. Vazhkudai
Oak Ridge National Laboratory

Oak Ridge, TN 37831 USA
vazhkudaiss@ornl.gov

ABSTRACT
High performance computing is facing an exponential growth
in job output dataset sizes. This implies a significant com-
mitment of supercomputing center resources—most notably,
precious scratch space—in handling data staging and of-
floading. However, the scratch area is typically managed us-
ing simple “purge policies”, without sophisticated “end-user
data services” that are required to balance center’s resource
consumption and user serviceability. End-user data services
such as offloading are performed using point-to-point trans-
fers that are unable to reconcile center’s purge and users
delivery deadlines, unable to adapt to changing dynamics in
the end-to-end data path and are not fault-tolerant.

We propose a robust framework for the timely, decentral-
ized offload of result data, addressing the aforementioned
significant gaps in extant direct-transfer-based offloading.
The decentralized offload is achieved using an overlay of
user-specified intermediate nodes and well known landmark
nodes. These nodes serve as a means both to provide multi-
ple data-flow paths, thereby maximizing bandwidth as well
as provide fail-over capabilities for the offload. We have im-
plemented our techniques within a production job scheduler
(PBS) and data transfer tool (BitTorrent), and our evalu-
ation shows that the offloading times can be significantly
reduced (90.2% for a 2.1 GB file), while also meeting center-
user Service Level Agreements.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
D.4.2 [Storage Management]: Storage hierarchies; D.4.5
[Reliability]: Fault-tolerance

∗This research is sponsored in part by the Laboratory Di-
rected Research and Development Program of Oak Ridge
National Laboratory (ORNL), managed by UT-Battelle,
LLC for the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725, and by the U.S. National Science
Foundation Faculty Early Career Development (CAREER)
Program CCF-0746832.

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

General Terms
Design, Performance, Reliability

Keywords
High performance data management, offloading, HPC center
serviceability, end-user data delivery

1. INTRODUCTION
Supercomputing centers routinely generate huge amounts

of data, resulting from high-throughput computing jobs. These
are often result-datasets or checkpoint snapshots from long-
running simulations, which are required to be offloaded to
end-user locations, where they can be visualized for fur-
ther scientific insights. For example, the Department of En-
ergy’s (DOE) National Leadership Class Facility (NLCF) at
Oak Ridge National Laboratory (ORNL), which is No. 7 in
the Top500 supercomputers as of this writing, is generat-
ing terabytes of data from user jobs from a wide-spectrum
of science applications in Fusion, Astrophysics, Climate and
Combustion. As we approach the petascale realm, we might
soon be faced with offloading a petabyte of data from a
single application run! Another example is the TeraGrid
where result-data—from computations at any of the nine
sites nation-wide—is required to be delivered to the end-
user. Accessing these national user facilities, is a geographi-
cally distributed user-base with varied end-user connectivity,
resource availability, and application requirements.

It is quoted that modern High Performance Computing
(HPC) center user services are often reminiscent of early
computers. Supercomputer user services involve a host of
issues such as data transfers, storage, software configura-
tion and compilation, all of which are critical to a successful
application run [3]. In this paper, we confine ourselves to
data services. Traditionally, centers have operated under
the premise that users come to them with all of their stor-
age and computing needs. The legacy of this approach still
weighs heavily when it comes to provisioning a center as
significant portions of the operational budget is spent on
large data stores and archives. End-user data services are
marginalized!

With the explosive growth in application data production,
it is impractical to store all user data indefinitely. HPC
centers are aware of this constraint and enforce purge poli-
cies to manage the precious scratch space by deleting data
based on a time window (ranging from a few hours to a few
days) [2, 1]. As supercomputer centers become crowded, the
purge policies get more stringent to ensure space for incom-

ing jobs. The purge window is, therefore, a product of the
center’s load, its provisioned storage and its desire to main-
tain a certain level of serviceability. However, there is no
corresponding end-user service for a timely offload of data,
to avoid purging. This is largely left to the user and is a man-
ual process, wherein users stage out result-data using point-
to-point transfer tools such as GridFTP [6], sftp, hsi [13],
and scp. The inherent problem with several point-to-point
transfer tools, used to offload data from supercomputers,
is that they are only optimized for transfers between two
well-endowed sites. For example, the TeraGrid offers sev-
eral optimizations (TCP buffer tuning, parallel flows, etc.)
for GridFTP transfers between the various site pairs that
make up the TeraGrid, which are already well connected
(10-40 Gbps links). In contrast, end-user data delivery in-
volves providing access to the data at the user’s desktop. It
cannot be ignored as a “last-mile” issue.

The lack of a sophisticated solution for result-data offload-
ing affects not only end-user service, but also center opera-
tions. The output data of a supercomputing job is the result
of a multi-hour—even several days’—run. Result output
data is usually stored in the supercomputer center’s scratch
space, which is a valuable commodity. The scratch space is
served through a high-speed parallel file system and is used
to store the input and output data of currently running or
soon to run jobs. A delayed offload of a job’s output data
results in sub-optimal use of scratch space in that the space
is held up by a job that is currently not running. Further, a
delayed offload also renders output-data vulnerable to cen-
ter purge policies. The loss of output-data leads to wasted
user time allocation, which is very precious and obtained
through rigorous peer-review. Thus, a timely offload can
help optimize both center as well as user resources

The need for timely data offloading is also fueled by the,
often, distributed nature of computing services and users’
job workflow, which implies that data needs to be shipped
to where it is needed. For example, several HPC applica-
tions analyze intermediate results of a running job, through
visualizations, to study the validity of initial parameters and
change them if need be. This process requires the expedi-
tious delivery of the result-data to the end-user visualization
application for online feedback. A slightly offline version of
this scenario is a pipelined execution, where the output from
one computation at supercomputer site A is the input to
the next stage in the pipeline, at site B (Figure 1). Large-
scale user facilities such as the Spallation Neutron Source
(SNS) [8] and LEAD [7] that employ distributed workflows
are already facing these problems and require efficient end-
user data delivery techniques.

The common thread in both of the example cases above is
the timely offload or delivery of output data. In the former
usecase, it can be stated as: Offload by a specified deadline to
avoid being purged ; In the latter, the twist is to: Deliver by
a specified deadline to ensure continuity in the job workflow.

1.1 Designing an Offload Scheme
Current solutions for offloading large data to end-user sites

are often mired by various factors. First, a direct download
from the HPC center to the end-user requires that end re-
sources be available for the entire duration of the transfer.
If this is not the case, the result-data is rendered vulnerable
to center purge policies. A desirable alternative, however, is
to quickly move the data from center scratch space—to an

intermediate storage location—so that the high-end, expen-
sive resource can be relieved. Better yet, the intermediate
storage location can be on the data path to the end-user
so the data can be delivered at the destination when the
end-resource becomes available again.

Second, current data offloading schemes from HPC centers
do not exploit orthogonal (residual, unused) bandwidth that
might be available between two end points. Exploiting such
bandwidth can help alleviate several problems endemic to
data downloading, such as bandwidth volatility. Peer-to-
peer (p2p) data delivery schemes have explored this space
with much success [9]. However, these techniques have not
been applied to large, scientific data and are also not aware
of application-level delivery constraints [14]. Further, p2p
techniques are optimized to work for a pull model rather
than a push.

What is needed is an architecture for timely end-user data
delivery that is able to reconcile both the HPC center’s as
well as a user’s constraints amidst varying bandwidth and
resource availability conditions.

1.2 Our Contributions
This paper makes the following contributions.
Staged and decentralized offloading: We propose a combi-

nation of both a staged as well as a decentralized offloading
scheme for job output data. This is fundamentally different
way of delivering result-data in HPC centers. Compared to
a direct transfer, our techniques have the added benefits of
resilience in the face of end-resource failure and the exploita-
tion of orthogonal bandwidth that might be available in the
end-to-end data path.

User-specified intermediate nodes: We adopt a novel vari-
ation to the use of intermediate nodes that differs from how
they are used in most decentralized systems. The nodes
participating in the transfer are specified and trusted by the
user, thereby eliminating the fundamental concern of data
delivery through a set of unreliable nodes in a decentralized
environment. We propose ways in which these nodes can be
specified.

Bandwidth adaptation and on-the-fly decision making: We
employ a decision making component that factors in several
parameters such as a center’s purge deadline, user delivery
schedule and a snapshot of current network conditions be-
tween the center and the end-user to determine the most
suitable approach to offload.

Fault-tolerant Offload: We utilize erasure coding schemes
to ensure that the offload is fault-tolerant.

Integration with real-world tools: Finally, we have devel-
oped our solution in the context of real-world tools such as
PBS [5] job submission system and BitTorrent [9].

2. RELATED WORK
The use of intermediate buffers to hide latency or to pro-

vide fault tolerance is a common practice in OS as well as file
systems. Kangaroo [26] extends this idea to Grid comput-
ing environments, with the goal to provide reliability against
transient resource availability. However, Kangaroo simply
provides a staged transfer mechanism and does not concern
itself with network vagaries or changing route dynamics in
an end-to-end data path.

IBP [20] offers a data distribution infrastructure with a set
of strategically placed resources to move data. Our approach
also exploits the presence of pre-installed storage nodes for

Site C
Site B

Enduser
Location

Offload result data by a specified
deadline to avoid purging
Offload result data

HPC Center

Offload result data by a specified deadline
to ensure continuity in job workflow/scratch

75% full

Job Queue

Compute Nodes

I/O Nodes

Job Output Data

Data Offload
Service

Job SLA

Center’s Purge
Deadline

Deletion

Site A

Job Input Data

Purge
Policy

Figure 1: Depiction of usecases for a timely offload of result-data: (a) an expeditious offload to
release center scratch space and to protect the data against a purge, (b) an end-user data delivery,
and (c) data delivery to another part of the job workflow. The figure also shows the interplay
between the various components in the HPC center.

data delivery as and when they are available. However, we
differ significantly in our attempt to combine both a staged
as well as a decentralized data delivery. The induction of
user-specified nodes also allows the system to optimize the
offload on a per user basis, which is not possible with IBP.
Further, our approach is unique in comparison to the above
techniques since we strive to meet a deadline in delivering
as well as in timely offloading from the HPC center.

A number of systems such as Bullet[16, 15], Shark [4],
CoDeeN [30], and CoBlitz [18] have explored the use of mul-
ticast and p2p-techniques for transferring large amounts of
data between multiple Internet nodes. The focus of these
systems is on downloading of user data, or receiving multi-
media streams. The target offloading in this work requires
factoring in center-user service agreements and dynamic re-
source availability, which are not considered in these sys-
tems.

The approach of downloading large files from several mir-
ror sites has been validated by its wide-spread use in BitTor-
rent [9], and many protocols for parallel downloading from
mirror sites have been proposed [24, 23, 10]. These works
are complimentary, and we built on the principles developed
in these systems, especially BitTorrent.

The Network Weather Service (NWS) [31] provides a pow-
erful framework which allows the resources of distributed
computers to be monitored. A number of resources can be
monitored such as the pair-wise bandwidth between comput-
ers and each computer’s CPU utilization, though there are
many other options. NWS bandwidth measurements have
been used in a static context to determine a Grid data site,
offering optimal download rates, from among multiple repli-
cated alternatives [29, 28, 27]. In this work, however, we
use measurements to determine a path within a network of
nodes and dynamically adjust it based on bandwidth degra-
dation.

3. DESIGN
In this section, we discuss the design of our offloading

system. We first present an overview of the system architec-
ture, followed by details of techniques used for selecting the
intermediate nodes. Finally, we describe the data offloading
process adopted in our system.

3.1 Architecture Overview
A decentralized data offloading scheme for HPC centers

that ensures timely data delivery (Figure 1) is achieved using
a combination of strategies both at the center as well as the
end-user to orchestrate the transfers.

We first discuss the Data Offload Manager at the HPC
center. The Manager takes as input, guidelines regarding
the purge deadline, Dpurge, from the HPC center’s scratch
space purging system, and job specification from the job sub-
mission system. The specifications include the output data
size, S, the job’s data delivery schedule as par the Service
Level Agreement (SLA), JSLA, and other details such as any
potentially available intermediate nodes, < Ni, Pi, BWi >,
where Pi denotes usage properties/constraints of the node,
Ni, and BWi denotes the current snapshot of the observed
NWS bandwidth between the HPC center and Ni. Based on
these parameters, the Manager decides upon either a direct
or a decentralized transfer of the job’s output data. The
decision, which we call an offload schedule, Os, delivers the
data in time, Toffload, which satisfies the property,

Toffload ≤ Min(Dpurge, JSLA)

Even after a particular course of action, such as a de-
centralized transfer, is chosen, a decision-making compo-
nent constantly re-evaluates the offload based on an updated
< Ni, Pi, BW ′

i >, where BW ′

i is the latest snapshot of NWS

bandwidth measurements. If the re-evaluated time to of-
fload, T ′

offload, satisfies the property,

T
′

offload > JSLA,

then, alternate routes are taken to meet the SLA.
For specification of input parameters, we instrument the

center’s job submission system so that end-users can specify
delivery constraints and deadlines as part of their regular
PBS [5] job scripts.

To automatically initiate data offload upon job comple-
tion, we use and extend our earlier work [32] on instrument-
ing the job submission system for starting user-specified di-
rect data transfers (e.g., scp or GridFTP) upon job comple-
tion. Here, we use that work to intimate the offload manager
of the availability of a job’s result dataset for decentralized
stage-out of the data. Having a center-wide offload manager
has the advantage that the manager can perform global op-
timization (e.g., higher priority to a stage-out that is on a
tight deadline).

A final piece in the data offload architecture is the uti-
lization of a number of user-specified intermediate nodes to
which data from the center is offloaded, and from which the
submission site can then asynchronously retrieve the data.
The intermediaries provide multiple data flow paths from
the center to the submission site, which lead to better of-
fload bandwidth utilization, faster retrieval speeds, as well
as fault-tolerance in the face of failure.

3.2 Intermediate Nodes

3.2.1 Motivation for Collaboration
The decentralized offload put forth in this paper makes

extensive use of intermediate nodes. We envision these to
be nodes that are specified and trusted by the user. More
specifically, consider the following collaboration scenarios
that present a strong case for the participation of interme-
diate nodes in the data offloading process.

In today’s HPC environment, supercomputing jobs are al-
most always collaborative in nature. In fact, a quick survey
of jobs awarded compute time on the ORNL NLCF, through
the DOE’s INCITE [11] program, suggests that these jobs
involve multiple users from multiple institutions. This col-
laborative property is even more true in the TeraGrid, which
is one of our key drivers for end-user data delivery. Jobs in
the TeraGrid are usually from a virtual organization, which
is a set of geographically dispersed users from different sites,
coming together to solve a problem of mutual interest for a
certain duration. In such cases, it is clear that many users,
from different sites will be interested in the resulting job
output data. Thus, there is a natural need to dispatch the
result data to more than a single location.

This emerging property of collaborative science can be
exploited to perform a collaborative offload of job output
data. Participating sites of the job can come together to
form an overlay of intermediate nodes that contribute space
and bandwidth for the offload. We argue that there exists a
natural incentive for the participating sites to do so. Such
a definition of intermediate nodes makes them more reliable
and alleviates a key concern of precious result-data being
transferred through an unreliable substrate.

3.2.2 Discovery
Although the intermediate nodes (Ni’s) are selected from

among the participating sites, nodes may be unavailable at
any given time, necessitating discovery.

We use a p2p overlay (Pastry [25]) to arrange the Ni’s.
Use of the overlay provides reliable communication with
other participants in the network. The participating sites
use the overlay to advertise their availability to other nodes
in the overlay using random broadcast. Nodes that receive
these messages build local information about available nodes
for offload. A given node can use its own policies and infor-
mation about a remote node’s capacity to make a decision
regarding whether to use the remote node for the offload.
Finally, before submitting a job to the HPC center, the sub-
mission site interacts with the center to sort the Ni’s with
increasing latency from the center, while at the same time
with decreasing latency from Ns. This set of nodes is pro-
vided to the center to utilize as the intermediate nodes, and
becomes an integral part of the job’s workflow.

3.2.3 Landmark Nodes
The reliance of our design on intermediate nodes exposes

the offload system to possible failures due to lack of suffi-
cient Ni’s. For instance, the submission site may not have
access to any (or sufficient enough) intermediate nodes on
the path to the HPC center. This could be either due to
the lack of many participating sites in the job or due to
the volatility of the intermediate nodes. To avoid such a
scenario, we propose to utilize a number of geographically
distributed Landmark nodes that are always available and
can serve as intermediate nodes. The Landmark nodes can
be other HPC centers, or nodes along national links such as,
Internet2, Lambda Rail or the TeraGrid to which many end-
users may be connected. The location and number of the
Landmarks is determined through out-of-band agreements
with the HPC center. We note that the envisioned Land-
mark nodes cannot provide best offload options for all sub-
mission sites, and thus are used only as a backup option
when user-specified intermediaries are not available.

3.3 The Data-Offloading Process
Once the job execution completes, the data-offloading pro-

cess is initiated. First, the center chooses a number of
nodes from the set of Ni’s ordered by available bandwidth.
The exact number of nodes used for this purpose, i.e., the
fan-out, is chosen to achieve maximum (pre-specified) out-
bound center bandwidth utilization, or to meet previously
agreed-upon offload deadlines. These chosen Ni’s serve as
the Level-1 intermediate nodes. Note that the selected fan-
out is not static, and can vary depending on the transfer
speeds achieved. Second, the result-data is split into chunks
and parallel transfer of the chunks to Level-1 nodes is initi-
ated. Since the Level-1 nodes are much closer to the center
than the submission site, the offload time is expected to be
much smaller than a direct transfer to the submission site.
Third, Level-1 intermediate nodes may also further transfer
data to the Level-2 intermediate nodes (once again chosen
from Ni’s), and so on. Consequently, data flows towards
Ns, though it is not pushed to Ns. Finally, Ns can asyn-
chronously retrieve the data from the Level-N nodes. Decou-
pling Ns from the data push path allows the center to offload
the data at peak (pre-specified) out-bound bandwidth with-
out worrying about the availability (and connection speed)

Level 1...

HPC
Center

Level 0

offload (push)

Level N

retrieve (pull)

...

submit(job, Ni)

site
Submission

Figure 2: The data flow path from the HPC center
to the submission site. The intermediate nodes are
represented by hexagons. The participants also run
an instance of the NWS (gray square) for bandwidth
monitoring.

of Ns, while enabling Ns to pull (retrieve) data from Ni’s
as necessary. The various steps in the offload process are
illustrated in Figure 2.

The use of intermediate nodes in our system provides mul-
tiple data-flow paths from the center to the submission site
Ns, leading to several alternative options for data delivery.
For instance, data may be replicated across different Ni’s
during the transfer from one level to the other. This will
allow Ns to pull data from a number of locations, thus pro-
viding fault tolerance against node failure, as well as better
utilization of the available in-bandwidth at Ns. The schedule
can also be used to simultaneously deliver data to multiple
interested sites in the network.

3.3.1 Providing Service Guarantees
The submission site and the HPC center have SLAs re-

garding how quickly data can be offloaded from the center.
Similar to the intermediate node specification, the SLAs are
also specified in a job submission script.

Given the dynamically changing bandwidths between par-
ticipants, a fixed or statically chosen fan-out is insufficient.
Therefore, we propose a bandwidth monitoring-based scheme
to dynamically adjust the fan-out and ensure meeting the
SLA. We employ the Network Weather Service (NWS) [31]
to monitor and estimate the available bandwidth between
participating nodes. Each participating node joins a“clique”,
which is a group of sensors that measure bandwidth. The
clique gives the center an estimate of the bandwidth avail-
able from it to different nodes. The center uses this informa-
tion to decide whether a chosen fan-out is sufficient to meet
a particular SLA, or needs to be increased. If needed, addi-
tional nodes from the set of Ni’s can be chosen to increase
the fan-out and meet the SLA. At each level, a decision mak-
ing component re-evaluates the time to offload as mentioned
earlier. In case the number of available Ni’s are insufficient
for meeting the SLA, the submission site is informed, which
in turn can either provide more intermediate nodes or accept
the best effort from the HPC center.

Node
Manager

SLA
compliance

Transfer
Module

Result
data

Manager
Offload

center/site

NWS
Query NWS

Ni’s

Erasure
coding

.
.
Chunks
.

SLA

Figure 3: System components and their interactions.

3.3.2 Fault Tolerance through Erasure Coding
As stated earlier, pieces of the result-data can be repli-

cated across many participating intermediate nodes, facili-
tating retrieval from any subset of the nodes. In addition
to this, we apply erasure code [17, 22] to the data to im-
prove the reliability of the transfer, while minimizing the
amount of transferred data. The computational cost of era-
sure coding can be paid by the Level-1 intermediate nodes
if coding at the HPC center (which will be part of the job’s
time allocation) is an issue.

In summary, by way of eagerly offloading result-data from
the center, our system avoids data loss due to center’s purge
policies. This in turn allows the center to free-up precious
scratch space for in-coming jobs and their data, thereby im-
proving its serviceability. By staging it on an intermediate
network of nodes, en-route to the destination, we ensure that
the offload will not fail due to end-user resource unavailabil-
ity. The result-data can be pulled from the intermediate
nodes as and when the end-user resource becomes available.

4. IMPLEMENTATION
We have implemented the system as described in Section 3

using about 3000 lines of C code. The p2p substrate of our
system is built using FreePastry [12]. Figure 3 shows the
architecture of the software that runs on all the participat-
ing nodes, and the interactions between key components.
The list of Ni’s and the SLA are provided through the job
submission script, and the bandwidth measurements are ob-
tained via NWS queries.

The erasure code that we have used is Reed-Solomon [21],
in 4:5 coding configuration, i.e., four input chunks are coded
to produce five output chunks, with a redundancy of 25%.
The chunk-size is a tunable parameter which can be set
based on the size of the data-sets being offloaded.

In the following we discuss how we have leveraged and
instrumented several widely-used tools for the specification
and utilization of intermediate nodes.

4.1 Integration with Job Submission
We have instrumented the PBS [5] job submission sys-

tem that is prevalent in HPC centers to enable specifica-
tion of user-defined intermediate nodes and deadlines. To
this end, we have devised a way for specifying intermedi-
ate nodes and delivery deadlines as annotations within a
standard PBS script. These annotations are specified as
directives, much like other PBS directives (e.g., #PBS). The
intermediate nodes can be further qualified with policy spec-

#PBS -N myjob

#PBS -l nodes=128, walltime=12:00

mpirun -np 128 ~/MyComputation

#Stageout Output DestinationSite

#InterNode node1.Site1:49665:50GB

...

#InterNode nodeN.SiteN:49665:30GB

#Deadline 1/14/2007:12:00

Figure 4: An example instrumented PBS script.

ification that captures usage constraints. These constraints
include the amount of space available for offload on a node,
and the node’s availability. More fine grained policies can
be easily added.

Figure 4 shows an instrumented PBS script, wherein a
user specifies the stage out to a destination, the use of inter-
mediate nodes with their space constraints, a port number
where our transfer protocol is listening, and a delivery dead-
line.

The annotated PBS script is submitted for execution to
the job scheduler at the HPC center. It is intercepted by
our parser that filters out directives specific to data offload-
ing, and passes those details to an offloading service for data
delivery. The remaining PBS Script is then handed over to
the PBS queue for standard processing. The offloading ser-
vice is aware of the center’s purge deadline and attempts
to reconcile that with user delivery deadline and intermedi-
ate/landmark nodes to achieve a desired data transfer sched-
ule.

4.2 Integration with BitTorrent and NWS
We have designed our offloading mechanism to exploit

the data dissemination abilities of BitTorrent [9] and net-
work monitoring facilities of the Network Weather Service
(NWS) [31].

Each participating node in our system runs an NWS dae-
mon. We have configured NWS sensors that keep track of
the vital statistics of each node, as well as record band-
width measurements between nodes. These measurements
are retrieved by our Offload Manager via periodic queries
and used in determining appropriate offload paths that can
sustain sufficient bandwidth to meet specified SLAs. The
Offload Manager also employs the data from NWS to select
additional peer nodes in case an SLA cannot be met.

The decision to add additional nodes to the offload path
is driven by several factors: user-center delivery and purge
deadlines, storage capacity of nodes (specified via the PBS
script), and the available bandwidth.

Once a set of intermediate nodes is selected using NWS,
we use BitTorrent’s scatter-gather protocol to transfer the
file from the center to the selected intermediate nodes. We
have instrumented and extended the original BitTorrent pro-
tocol in the following novel ways: the entire result-data file
is not transmitted to all the intermediate nodes, rather dif-
ferent (overlapping) subsets arrive at different nodes; the
number of receiving nodes change dynamically based on our
offload predictions and global utilization information; the re-
ceiving nodes are not necessarily the end-recipients of data;
there are several levels of intermediate nodes that provide
better control over SLA enforcement; and most importantly,
the offload from the center is decoupled from the download
at the end-host which occurs separately depending on end-
host availability.

The Offload Manager creates a “torrent” file for the sub-
set of data to be transmitted to a set of chosen interme-
diate nodes. The torrent file contains meta-data informa-
tion about the data. The Manager also provides BitTorrent
tracking services for providing the intermediate nodes in-
formation about what data has been transmitted to which
node. Once the nodes receive the torrent file, they use the
metadata information along with the tracker to “download”
the data subset to their local storage. The process is re-
peated at all the intermediate node levels. Finally, the end-
host can also use appropriate torrent files to download the
result-data from the intermediaries, thus completing the of-
floading process.

5. EVALUATION
In this section, we present an evaluation of our result-data

offloading approach using the implementation of Section 4.
In the following, we discuss the effectiveness of our design
in achieving faster HPC center offloads.

5.1 Experimental Setup
We emulated the dynamic behavior of the proposed data

offload model using the distributed testbed facilities of Plan-
etLab [19]. For our experiments, we chose 22 PlanetLab sites
such that the HPC center and the submission site were on
opposites coasts of the US, while the rest of the nodes were
geographically scattered in between. All the nodes were ar-
ranged in a tree with the HPC center as root, the number of
children ranging from zero to four, and two levels of interme-
diaries. Such a tree offers multiple data flow paths from the
center to the submission site and allows for testing the ap-
proach under different scenarios. Figure 5 shows the exper-
imental setup, as well as the observed pair-wise bandwidths
between various nodes on the data flow path. In the follow-
ing experiments the chunk size was set to 256 KB. Moreover,
to account for the dynamic behavior of our testbed, the re-
ported numbers represent averages over a set of three runs.

5.2 Approach Feasibility
In the first set of experiments, we determined the feasi-

bility of our approach compared to a simple point-to-point
direct transfer using scp (Direct). For this purpose, we used
a range of file sizes from 100 MB to 2.1 GB and measured
the time of a direct transfer between the center and the sub-
mission site. For our offloading approach, we used a combi-
nation of BitTorrent along with NWS as outlined earlier.

In Table 1, we compare Direct transfers with the times to
offload data from the source (HPC center) to Level-1 nodes
(Offload), time to forward the data from Level-1 to Level-2
(Push), and the time it takes the submission site to pull the
data (Pull). Compared to a direct transfer, the Offload is
able to release the HPC center scratch space by up to 86.7%
to 90.2% sooner for the data sizes we considered. This has
a significant impact on the HPC center serviceability since
the free space can now be used for new incoming jobs.

Compared to Direct, the time to pull the data on the sub-
mission site is reduced by 86.0% to 90.4%. The reported pull
time represents the time to transfer the file from Level-1 and
Level-2 nodes to the submission site, and does not include
the transfer time from the source. However, the submission
site pull is asynchronous, and can start as soon as chunks
begin to arrive at Level-2 nodes. We note that the over-
all transfer time, i.e., the time from when the source starts

Center

cb da

e gf h i

k l

j

m n

to p q r s

Ns

(i) Relationship between
nodes.

Observed Bandwidth (Mbps)Node PlanetLab site
Ns a b c d

Center jerry.cc.vt.edu 2.05 45.7 12.6 13.5 11.1
Ns planet1.scs.stanford.edu - 2.13 2.02 2.37 2.28
a bob.cc.vt.edu 2.13 - 12.6 13.4 8.36
b pepper.planetlab.cs.umd.edu 2.02 12.6 - 30.4 12.5
c salt.planetlab.cs.umd.edu 2.37 13.4 30.4 - 14.3
d plgmu2.ite.gmu.edu 2.28 8.36 12.5 14.3 -
e planet2.scs.stanford.edu 42.6 2.28 2.19 2.15 2.25
f planetlab-1.cs.princeton.edu 2.08 7.93 7.12 9.32 10.9
g planetlab-2.cs.princeton.edu 1.84 8.84 12.5 12.5 13.1
h planetlab-3.cs.princeton.edu 1.96 8.26 7.63 9.69 11.3
i planetlab-4.cs.princeton.edu 1.82 7.77 10.7 10.9 11.9
j planetlab1.cs.purdue.edu 2.36 4.38 5.18 5.21 4.98
k planetlab2.cs.purdue.edu 2.28 4.46 5.79 5.66 5.17
l planetlab1.cs.wisc.edu 1.82 3.31 3.67 3.90 3.83
m planetlab2.flux.utah.edu 3.48 2.50 2.73 2.83 2.65
n planetlab4.cs.duke.edu 2.14 8.56 8.18 8.36 1.72
o pl1.unm.edu 3.57 2.53 2.29 2.31 1.01
p pl2.unm.edu 3.39 2.55 2.21 2.27 1.18
q planetlab2.cis.upenn.edu 2.05 1.66 10.6 11.3 11.1
r ricepl-2.cs.rice.edu 4.13 3.58 4.03 4.10 4.22
s planetlab8.millennium.berkeley.edu 28.7 1.92 1.99 1.79 1.94
t planetlab9.millennium.berkeley.edu 29.9 1.88 2.03 1.93 1.99

(ii) Chosen PlanetLab sites, and observed bandwidths between nodes. The dash
represents node pairs that do not interact.

Figure 5: The experimental setup used for evaluation.

Table 1: The time, in seconds, to transfer varying
file sizes, using a direct transfer (scp), and our de-
centralized approach.

File Size 100 MB 240 MB 500 MB 2.1 GB
Direct 286 727 1443 5834
Offload 38 95 169 570
Push 82 179 349 1123
Pull 29 93 202 562

Table 2: The time to transfer a 2.1 GB file using
standard BitTorrent. The equivalent phases for our
scheme are shown in brackets.

Phase Time(s)
Send one copy from center (Offload) 1172

Send to all intermediate nodes (Push) 1593
Submission site download (Pull) 571

sending the data to when the submission site has received
all the data is not a suitable metric, as our approach allows
the site to be offline during the offloading process and delay
starting the pull as necessary.

5.3 Dynamic Data Scheduling
In this section, we compare our approach with a regu-

lar BitTorrent-based data transfer. In this case, we use
NWS bandwidth measurements to greedily provision Level-
1 nodes to increase the fan-out until a maximum (predeter-
mined) center outbound bandwidth is utilized.

Table 1, discussed in the previous section, shows data of-
floading using the bandwidth measurement-based approach.
Table 2 shows the time taken to deliver a 2.1 GB dataset
using the regular, unmodified BitTorrent protocol. Our re-
sults indicate that all three steps in our approach: Offload,
Push and Pull out-perform the corresponding steps in reg-
ular BitTorrent transfer. The Offload from the HPC cen-
ter to Level-1 nodes is 50.4% faster, while the Push from

Table 3: Relative improvement in file transfer times
using BitTorrent under varying chunk sizes, com-
pared to the default chunk size of 256 KB.

Chunk Size 128 KB 256 KB 512 KB 1024 KB
Time saved (%) -2.14 0 5.46 6.58

Level-1 nodes to Level-2 nodes is 29.5% faster. Use of band-
width measurements, therefore, results in reduced interme-
diate forwarding time. The time to pull the file to the sub-
mission site is slightly improved by 1.5%. This is expected,
as the flow paths do not affect the time it would take for
the submission site to pull the file. These results show that
bandwidth measurement provides a good tool for improving
offload times.

5.3.1 Effect of Chunk Size on Offload times
In our next experiment we varied the chunk size used by

BitTorrent, and observed the effects on file transfer time.
The results are in Table 3. As the chunk size increases the
transfer time decreases. A chunk size of 1024 KB improves
transfer speed by 6.58% when compared with the default
chunk size of 256 KB. These results indicate transfers can
benefit from larger chunk sizes.

5.3.2 When to Employ Staged Offload?
In the experimental setup we have adopted, the band-

width available between the center and Level-1 nodes is
greater than that between the center and Ns. Thus, in this
setup, the center will always decide to perform staged of-
floading. In the next experiment, we modified the setup to
use Node a as the end user site, and did not use Ns. Then,
we repeated the above experiment to offload a 2.1 GB file,
first, without considering direct transfer and always using
the staged offload mechanisms, and second, with the ability
to choose between direct and staged offload depending on
the ability to meet a SLA deadline. We observed that for
the first case, the time to offload and pull the data was 610

0 MB/s

1 MB/s

2 MB/s

3 MB/s

4 MB/s

5 MB/s

 0 100 200 300 400 500 600

A
va

ila
bl

e
ba

nd
w

id
th

 a
t e

ac
h

N
od

e

Time (s)

N1

Direct
t1

t2 t3 t4 t5

N2

N3

N4

Figure 6: Utilized out-bound bandwidth at the cen-
ter, as the system adjusts to failures and meets the
600s deadline for offloading. The labeled regions
represent utilized bandwidth to individual nodes.

seconds and 400 seconds, respectively. In contrast, for the
second case the direct transfer completed in 380 seconds, an
improvement of 37.7% in offload times. This result coupled
with the earlier experiments stress the need for the offload
mechanisms to dynamically adjust to the variations in the
system behavior and to not be hard-wired to simply always
do a staged offload or a direct transfer.

5.4 Enforcing SLA
In the next experiment, we study the effectiveness of the

proposed approach in enforcing SLAs. We assume that the
submission site and the HPC center have agreed on an SLA
to offload the 2.1 GB file to four Level-1 nodes (N1 to N4)
or a direct transfer in 600s. Initially, we choose a site that
supports a large bandwidth between the center and the site.
Thus, our algorithm starts off by doing a direct transfer.
However, at time t1 = 10s, we limit the inbound bandwidth
of the site to 1/10 of its value. Soon after this happens, our
system realizes that the SLA cannot be met with a direct
transfer and switches to a staged offload. Once an offload
schedule is chosen, we utilize bandwidth provided by the
NWS to estimate the time Et it would take to offload the
remaining chunks of the file. If Et turns out to be longer
than necessary to meet the SLA, the fan-out is increased.
The process is repeated every time the available bandwidth
predictions change. To force dynamic scheduling to come
into play, we artificially introduced two bandwidth-changing
events during the offload: at time t2 = 150s, we limited the
available bandwidth to N1 to about 1 MB/s; and at time
t3 = 250s, we failed N2. Figure 6 shows the sum of the
utilized bandwidths between the center and each of the four
Level-1 nodes reported every second. Initially, only N1 and
N2 are used. Soon after t2, the drop in N1’s bandwidth
is detected causing an increase in Et. The system reacts
by increasing the fan-out to use N3, so that Et remains
under the 600s deadline. Note that between t2 and t3, the
maximum available bandwidth of N3 was not needed to meet
the SLA and was not utilized. However, when N2 failed at t3,
the system first uses N3’s maximum bandwidth as observed
as a spike (indicated by the arrow) in N3’s curve following
t3. However, this increase is not sufficient to compensate

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

A
va

ila
bl

e
da

ta
 (

%
)

Number of failed nodes

RS-two copies
No coding-two copies

RS
No Coding

Figure 7: Available data under different error cod-
ing schemes, as intermediate nodes fail.

for the loss of N2, hence, the fan-out is adjusted to also
use N4. Also note that between t4 and t5, the available
bandwidth for N1 is reduced significantly enough to cause
the system to utilize a higher bandwidth to N4 so that the
overall total bandwidth is maintained to meet the SLA. Once
N1’s bandwidth returns to normal, our greedy algorithm
once again increases the use of N1’s bandwidth and reduces
the use of N4’s bandwidth. The two spikes at t4 and t5
capture the system response time to these events. Finally,
as observed from the figure, the system is able to transfer
the file within the specified SLA by dynamically adjusting
the fan-out.

5.5 Data Availability
In this experiment, we measured the effect of Error Cod-

ing in achieving fault tolerance. For this purpose we ran-
domly failed several intermediate nodes during the course of
the transfer and determined what portions of the file have
become unavailable. The experiment was repeated with in-
creasing number of failed nodes, up to 10 (50%). Figure 7
shows the average results over three runs for four scenarios:
with no error coding, using 4:5 Reed-Solomon [21] coding
(RS), and using replication to create two copies under both
no error coding and RS. As expected, using neither error
coding nor replication causes data to become unavailable
even with a single failure, with up to 87.9% data being un-
available with 10 failed nodes. Use of error coding or replica-
tion allows the file to be transferred successfully even when
multiple nodes on the path from the center to the client fail.
Note that both RS-single copy and replication are able to
provide 100% availability with up to two (10%) node fail-
ures. This is promising as our RS code have only 25% re-
dundancy to that of 100% of replication. However, with
additional node failures simple replication is able to provide
better availability than RS. Creating two copies of data un-
der RS further improves data availability: 100% availability
when 25% of the intermediate nodes have failed, 89.7% avail-
ability with the extreme case of 50% of failed intermediate
nodes. Hence, error coding at the center along with replica-
tion through multiple data-flow paths can provide excellent
fault-tolerance behavior for the offloading process.

6. CONCLUSION
In this paper, we have presented the design and imple-

mentation of a result-data staging-out service for HPC cen-
ters. Staging-out large data to end-user locations in a timely
manner is critical to center operations, its availability and
serviceability. Our approach presents a fresh look at of-
floading by using a set of user-specified intermediate nodes
to construct a p2p network and transferring data based on
bandwidth-adaptation.

Our results indicate that our offloading approach improves
the rate at which the data is staged-out of the center (90.2%
for a 2 GB file), while allowing the submission site to pull
the data as and when the site becomes available, at a much
higher transfer rate because the result-data has already been
staged closer. Further, offloading enables us to deliver data
based on a previously agreed upon SLA, dynamically varying
the fan-out as necessary. Such a scheme can be extremely
useful to both HPC centers and users.

Our evaluation shows that the presented offloading scheme
reacts well to system variations in meeting user-center SLA’s
and deciding when a staged offload is preferable to a direct
transfer, and achieves good fault-tolerance via its use of era-
sure coding and replication.

In summary, the offloading approach effectively utilizes
orthogonal, residual bandwidth and can serve as an alterna-
tive to direct transfers, which may not always be feasible,
optimal, or fault-tolerant. While a distributed stage-out is
highly competitive, it also throws open future research ques-
tions in terms of the strategic placement, and selection, of
intermediate nodes between an HPC center and end-user
destinations.

7. REFERENCES
[1] UC/ANL Teragrid Guide.

http://www.uc.teragrid.org/tg-docs/user-
guide.html#disk,
2004.

[2] NCCS.GOV File Systems.
http://info.nccs.gov/computing-resources/jaguar/file-
systems,
2007.

[3] User Support and Assistance.
http://www.nccs.gov/user-support/, 2007.

[4] S. Annapureddy, M. J. Freedman, and D. Mazires.
Shark: Scaling file servers via cooperative caching. In
Proc. 2nd USENIX NSDI, pages 129–142, Boston,
MA, May 2005.

[5] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann,
T. Proett, and D. Tweten. Portable Batch System:
External reference specification. 2672 Bayshore
Parkway, Suite 810, Mountain View, CA 94043, Nov.
1999. http://www-unix.mcs.anl.gov/openpbs/docs/
v2_2_ers.pdf.

[6] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and
S. Tuecke. GASS: A data movement and access service
for wide area computing systems. In Proceedings of the
Sixth Workshop on I/O in Parallel and Distributed
Systems, 1999.

[7] M. Christie and S. Marru. The lead portal: a teragrid
gateway and application service architecture:
Research articles. Concurrency and Computation :
Practice and Experience, 19(6):767–781, 2007.

[8] J. W. Cobb, A. Geist, J. A. Kohl, S. D. Miller, P. F.
Peterson, G. G. Pike, M. A. Reuter, T. Swain, S. S.
Vazhkudai, and N. N. Vijayakumar. The neutron
science teragrid gateway: a teragrid science gateway
to support the spallation neutron source: Research
articles. Concurrency and Computation : Practice and
Experience., 19(6):809–826, 2007.

[9] B. Cohen. BitTorrent Protocol Specification, May
2007. http://www.bittorrent.org/protocol.html.

[10] R. L. Collins and J. S. Plank. Downloading replicated,
wide-area files – a framework and empirical
evaluation. In Proc. 3rd IEEE International
Symposium on Network Computing, pages 89–96,
Washington, DC, Aug. 2004.

[11] Department of Energy, Office of Science. Innovative
and Novel Computational Impact on Theory and
Experiment (INCITE), Jan 2008.
http://www.er.doe.gov/ascr/incite/.

[12] Druschel et. al. Freepastry.
〈 http://freepastry.rice.edu/ 〉 (2004).

[13] M. Gleicher. HSI: Hierarchical storage interface for
HPSS. http://www.hpss-collaboration.org/hpss/HSI/.

[14] S. Kiswany, M. Ripeanu, A. Iamnitchi, and
S. Vazhkudai. Are peer-to-peer data dissemination
techniques viable in todays data intensive scientific
collaborations? In Proceedings of the 13th
International Euro-Par Conference: European
Conference on Parallel and Distributed Computing,
2007.

[15] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. M. Vahdat. Using random subsets to build scalable
network services. In Proc. 4th USENIX USITS,
Seattle, WA, Mar. 2003.

[16] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: High bandwidth data dissemination using an
overlay mesh. In Proc. 19th ACM SOSP, pages
282–297, Bolton Landing, NY, USA, Oct. 2003.

[17] P. Maymounkov. Online Codes. Technical Report
TR2003-883, New York University, New York, Nov.
2002.

[18] K. Park and V. S. Pai. Scale and performance in the
CoBlitz large-file distribution service. In Proc. 3rd
USENIX NSDI, pages 29–44, San Jose, CA, May 2006.

[19] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proc. First ACM Workshop on Hot
Topics in Networks (HotNets-I), Princeton, NJ, Oct.
2002.

[20] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany,
and R. Wolski. The Internet Backplane Protocol:
Storage in the network. In Proceedings of the Network
Storage Symposium, 1999.

[21] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, 1997.

[22] J. S. Plank. Erasure codes for storage applications,
2005. Tutorial Slides, presented at USENIX FAST,
http://www.cs.utk.edu/~plank/plank/papers/

FAST-2005.html.

[23] J. S. Plank, S. Atchley, Y. Ding, and M. Beck.
Algorithms for high performance, wide-area
distributed file downloads. Parallel Processing Letters,

13(2):207–224, 2003.

[24] P. Rodriguez, A. Kirpal, and E. W. Biersack.
Parallel-access for mirror sites in the internet. In Proc.
IEEE Infocom, pages 864–873, Tel Aviv, Isreal, Mar.
2000.

[25] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. IFIP/ACM Middleware,
pages 329–350, Heidelberg, Germany, Nov. 2001.

[26] D. Thain, S. S. J. Basney, and M. Livny. The
kangaroo approach to data movement on the grid. In
Proceedings of the Tenth IEEE Symposium on High
Performance Distributed Computing (HPDC10), 2001.

[27] S. Vazhkudai and J. Schopf. Predicting sporadic grid
data transfers. In Proceedings of the 11th IEEE Int’l
Symposium on High Performance Distributed
Computing (HPDC-11), 2002.

[28] S. Vazhkudai, J. Schopf, and I. Foster. Predicting the
performance of wide-area data transfers. In
Proceedings of the 16th Int’l Parallel and Distributed

Processing Symposium (IPDPS 2002), 2002.

[29] S. Vazhkudai, S. Tuecke, and I. Foster. Replica
selection in the globus data grid. In Proceedings of the
IEEE International Conference on Cluster Computing
and the Grid (CCGRID 2001), 2001.

[30] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson.
Reliability and security in the CoDeeN content
distribution network. In Proc. USENIX ATC, pages
171–184, Boston, MA, June 2004.

[31] R. Wolski, N. Spring, and J. Hayes. The Network
Weather Service: A distributed resource performance
forecasting service for metacomputing. Future
Generation Computing Systems, 15(5):757–768, 1999.

[32] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike,
J. Cobb, and F. Mueller. Optimizing center
performance through coordinated data staging,
scheduling and recovery. In Proceedings of
Supercomputing 2007 (SC07): Int’l Conference on
High Performance Computing, Networking, Storage a
nd Analysis, June 2007.

